№55 / А. Смольянова


  1. Yu T. T., Han N., Li L.-G., Peng X.-Ch., et al. Chlorin e6-Induced Photodynamic Effect Polarizes the Macrophage Into an M1 Phenotype Through Oxidative DNA Damage and Activation of STING. Front Pharmacol. 2022, № 3(13). P. 837784. 
  2. Vogelpoel L. T., Baeten D. L., de Jong E.C. et al. Control of cytokine production by human Fc gamma receptors: implications for pathogen defense and autoimmunity. Front. Immunol. 2015, № 6(1). P. 79.
  3. Soehnlein O., Lindbom L., Weber C. Mechanisms underlying neutrophil-mediated monocyte recruitment. Blood. 2009, № 114(21). P. 4613-31.
  4. Mantovani A., Sica A., Sozzani S. et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology. 2004, № 25(12). P. 677-86.
  5. Tatano Y., Shimizu T., Tomioka H. Unique macrophages different from M1/M2 macrophages inhibit T cell mitogenesis while upregulating Th17 polarization. Scientific Reports. 2014, 4, Article number: 4146.  
  6. Spiller K. L., Anfang R. R., Spiller K. J. et al. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials. 2014, № 35(15). P. 4477-88. 
  7. Ferraresi C., Hamblin M.R., Parizotto N.A. Low-level laser (light) therapy (LLLT) on muscle tissue: performance, fatigue and repair benefited by the power of light. Photonics Lasers Med. 2012, № 1. P. 267–286.
  8. Karu T. I. Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life. 2010, № 62(8). P. 607–610. 
  9. Lunova M., Smolková B., Uzhytchak M., Janousková K. Z., et al. Light Induced modulation of the mitochondrial respiratory chain activity: possibilities and limitations. Cell Mol Life Sci. 2020, № 77(14). P. 2815-2838.
  10. Ribeiro B. G., Alves A. N., Santos L. A., Fernandes K. P.S., et al. The effect of low-level laser therapy (LLLT) applied prior to muscle injury. Lasers Surg Med. 2015, № 47(7). P. 571-578.
  11. Albertini R., Villaverde A. B., Aimbire F., Salgado M. A. C., et al. Anti-inflammatory effects of low-level laser therapy (LLLT) with two different red wavelengths (660 nm and 684 nm) in carrageenan-induced rat paw edema. J Photochem Photobiol B. 2007, № 89(1). P. 50-5.  
  12. Oh C. T., Kwon T. R., Choi E. J., Kim S. R., et al. Inhibitory effect of 660-nm LED on melanin synthesis in vitro and in vivo. Photodermatol. Photoimmunol. Photomed. 2017, № 33. P. 49-57.
  13. de Lima FJ, de Oliveira Neto O.B., Barbosa F.T., et al. Is there a protocol in experimental skin wounds in rats using low-level diode laser therapy (LLDLT) combining or not red and infrared wavelengths? Systematic review. Lasers Med Sci. 2016, № 31. P. 779-787.
  14. Tchanque-Fossuo C.N., Ho D., Dahle S.E., et al. Low-level light therapy for treatment of diabetic foot ulcer: a review of clinical experiences. J Drugs Dermatol. 2016, № 15. P. 843-848.